$(\frac{d\vec{p}}{dt})\parallel = \vec{F}_{net}\parallel$ is the rate of change of the amgnitude of the momentum.
$(\frac{d\vec{p}}{dt})\perp = \vec{F}_{net}\perp$ is the rate of change of the direction of the momentum, which is numerically equal to the sideways (perpendicular) component of net force. Other associations:$$|(\frac{d\vec{p}}{dt})\perp| = |\vec{p}|\frac{|\vec{p}|}{R}$$$$|(\frac{d\vec{p}}{dt})\perp| = |\vec{p}||\frac{d\hat{p}}{dt}| = |\vec{p}|\frac{|\vec{p}|}{R} = \frac{\gamma mv^2}{R}$$$$|\vec{a}\perp| = |(\frac{d\vec{v}}{dt})\perp| = |\vec{v}||\frac{d\hat{v}}{dt}| = |\vec{v}|\frac{|\vec{v}|}{R} = \frac{v^2}{R}$$$$\frac{d\vec{p}}{dt}\leftarrow\vec{F}_{net}$$
Labels
physics
(21)
force
(6)
momentum
(6)
velocity
(6)
average velocity
(3)
position
(3)
constant
(2)
mass
(2)
momentum principle
(2)
net force
(2)
newton's second law
(2)
surroundings
(2)
system
(2)
tension
(2)
acceleration
(1)
atoms
(1)
average acceleration
(1)
center
(1)
conservation
(1)
coulombs
(1)
electric interaction
(1)
friction
(1)
fundamental
(1)
gamma
(1)
gravity
(1)
impulse
(1)
instantaneous acceleration
(1)
instantaneous velocity
(1)
kinetic
(1)
momentum update
(1)
newtons
(1)
position update
(1)
sliding
(1)
spring
(1)
spring constant
(1)
spring force
(1)
springs
(1)
static
(1)
strain
(1)
stress
(1)
thickness
(1)
vectors
(1)
young's modulus
(1)